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Abstract
Tumors often overcome the cytotoxic effects of chemotherapy through either acquired or environment-mediated drug resist-
ance. In addition, signals from the microenvironment obfuscate the beneficial effects of chemotherapy and may facilitate 
progression and metastatic dissemination. Seminal mediators in chemotherapy-induced metastasis appear to be a wide range 
of hematopoietic, mesenchymal and immune progenitor cells, originating from the bone marrow. The actual purpose of 
these cells is to orchestrate the repair response to the cytotoxic damage of chemotherapy. However, these repair responses 
are exploited by tumor cells at every step of the metastatic cascade, ranging from tumor cell invasion, intravasation and 
hematogenous dissemination to extravasation and effective colonization at the metastatic site. A better understanding of 
the mechanistic underpinnings of chemotherapy-induced metastasis will allow us to better predict which patients are more 
likely to exhibit pro-metastatic responses to chemotherapy and will help develop new therapeutic strategies to neutralize 
chemotherapy-driven prometastatic changes.

Keywords TMEM · Cancer cell dissemination · MenaCalc · Bone marrow-derived cells · Mesenchymal stem cells · 
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Introduction

Current standard of cancer care for the loco-regional disease 
commonly includes surgery, radiotherapy and/ or chemo-
therapy. Depending on cancer type and stage of the dis-
ease, these treatments may be curative. However, a subset 
of patients will develop distant metastases and face high 

mortality despite achieving complete control of the local 
disease. The conventional belief is that metastases repre-
sent growth of clinically and radiographically undetectable 
foci of cancer already present at the time of initial treatment 
[1–3]. However, accumulating evidence now suggests that 
chemotherapy itself may under certain circumstances induce 
intratumoral or systemic changes, which can paradoxically 
exacerbate cancer cell proliferation and dissemination in 
certain patients [3]. For example, preoperative or neoadju-
vant chemotherapy (NAC) may not only select for chemore-
sistant tumor clones, as traditionally suggested, but it may 
also drive the development of novel mutant clones which 
directly correlate with the development of metastatic disease 
[4]. In addition to inducing novel mutant clones, NAC may 
induce pro-metastatic changes in the microenvironment of 
the primary tumor. These pro-metastatic changes represent 
consequences of host-repair mechanisms in response to cyto-
toxic tissue damage [5], and are typically triggered by the 
systemic release of cytokines and chemokines, resembling 
those found during wound healing and inflammation. The 
systemic release of cytokines can also occur during post-
operative or adjuvant chemotherapy and may render distant 
organs more prone to metastatic seeding [6, 7].
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Thus, an increasing body of evidence indicates that chem-
otherapy in certain instances could increase the metastatic 
potential of cancers. Therefore, it is crucial to gain more 
thorough understanding of the contextual prerequisites under 
which chemotherapy induces or exacerbates metastasis. 
Consistent with the idea that treatment of tumors that induce 
an injury-like response can contribute to metastasis, it has 
been noted that increased circulating tumor cells may rise in 
cancer patients and preclinical animal models of cancer, as 
a consequence of radiotherapy, surgery and surgical biopsy, 
besides chemotherapy [3]. However, here, we provide a com-
prehensive review specifically on the pro-metastatic effects 
of chemotherapy and not of other treatment modalities (for 
the later, please see an excellent review by Martin et al. [3]). 
Understanding the relationship of tumor injury to metastasis 
will help improve treatment of metastatic disease, and help 
stratify cancer patients according to their potential response 
to chemotherapy, to achieve the highest standards in person-
alized medicine.

Revisiting the metastatic cascade

The metastatic cascade has been described as a sequence of 
events leading to the development of metastatic tumors in 
organs and tissues distant from the primary tumor site. The 
knowledge of the molecular and cellular events involved in 
individual steps of the metastatic cascade has expanded over 
the past years revealing complexity beyond what was origi-
nally thought [8, 9]. This review focuses on the recent con-
ceptual advancements on the biology of metastasis, critical 
for understanding how chemotherapy could paradoxically 
induce the progression of metastasis.

Epithelial‑to‑mesenchymal transition (EMT), cell 
invasion and migration

In most epithelial cancers, tumor cells undergo epithelial-
to-mesenchymal transition (EMT), a biological program that 
allows the cells to gain mesenchymal phenotype and invade 
blood or lymphatic vessels. Hence, the evidence of EMT in 
many tumors has been associated with increased metastasis 
and worse prognosis [9–15]. During EMT cancer cells typi-
cally downregulate epithelial-specific cadherin, E-Cadherin, 
and upregulate mesenchymal-specific cadherin, N-Cadherin 
[16, 17] Detailed molecular mappings of multiple EMT 
markers and pathways have been explored in detail to better 
understand how mesenchymal plasticity conveys metastatic 
behavior in tumor cells [18]. Although EMT is a crucial 
hallmark of the metastatic cascade [9], the extent of EMT 
contribution during metastasis is debated. For instance, an 
early study by Wicki et al. suggested that podoplanin-based 
filopodia can enhance cancer cell invasion in the absence of 

EMT in breast and pancreatic beta-cell cancers [19]. Another 
study by Fischer et al. that utilized an EMT lineage-tracing 
system which examined the expression of a mesenchymal-
specific fluorescent reporter whose expression becomes irre-
versible after EMT induction, suggested that EMT is only 
partial during metastasis [20].

Markers of EMT and its associated tumor cell dissemi-
nation have emerged were shown to be clinically useful in 
the assessment of metastatic risk in breast cancer patients. 
During EMT, the activity of Epithelial Splicing Regulatory 
Protein 1 (ESRP1) reduces the expression of MENA11a, 
an isoform of the actin-regulatory protein MENA that 
promotes cellular cohesiveness [21]. The decreased level 
of Mena11a is frequently accompanied by concurrent 
increase in the expression of invasive MENA isoforms, 
such as  MENAINV among others, which promote invasion 
and migration of tumor cells [22–25]. This MENA expres-
sion pattern,  MENA11alow and  MENAINV-Hi, also known as 
 MENACalc, is associated with increased cancer cell invasive-
ness, metastasis and poor prognosis in breast cancer patients 
[26–28]. Mechanistically,  MENAINV-Hi expression induces 
up to a 50-fold enhanced chemotactic response to EGF, 
HGF and IGF ligands by sequestering PTB1B away from 
the receptor tyrosine kinases (RTKs) [29–32]. In addition, 
 MENAINV-Hi cells have increased haptotaxis on fibronectin 
via interaction with integrin α5 [33], and generate mature 
invadopodia by enhancing the phosphorylation of cortac-
tin in the invadopodium core structure [34]. Invadopodia 
are actin-polymerization driven protrusions that focally 
degrade extracellular matrix (ECM) and are required for 
transendothelial migration during tumor cell dissemination 
[35, 36]. Within the tumor microenvironment,  MENAINV-Hi 
tumor cells migrate on collagen fibers as a stream paired 
with tumor associated macrophages (TAMs) towards HGF-
secreting endothelial cells [31, 37–41]. This pairing behavior 
is maintained though the EGF/CSF1 paracrine loop (Fig. 1), 
which keeps macrophages and cancer cells in close proxim-
ity [22, 38, 42, 43]. Interestingly, a recent study showed that 
the direct contact between cancer cells and macrophages 
induces  MenaINV expression in cancer cells via a juxtacrine 
loop, (Fig. 1) involving Notch-Jagged mediated signaling 
[44]. It is plausible that macrophage-cancer cell contact dur-
ing streaming is required for  MENAINV expression in tumor 
cells in vivo. Thus, the directional streaming of  MENAINV-Hi 
tumor cells towards the underlying vasculature may repre-
sent the major route for cancer cell dissemination and thus 
a prerequisite for metastasis [45].

Regulation of vascular permeability 
and intravasation by  TIE2HI macrophages

The EMT and the directional streaming of  MENAINV-Hi 
tumor cells towards blood vessels are not sufficient to cause 
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cancer cell dissemination, since a specialized cancer cell 
intravasation mechanism is also required for the entry of 
cancer cells into the circulation [45]. Intravital imaging of 
breast cancer in live mice has demonstrated that intravasa-
tion does not occur throughout the entirety of the cancer-
associated endothelium, but instead is localized in specific 
microanatomical structures, known as “tumor microenviron-
ment of metastasis” (TMEM) (Figs. 1, 2A). TMEM is com-
posed of three cell types, a  MenaHi tumor cell, a perivascular 
macrophage and an endothelial cell, all in direct contact with 
each other [46]. TMEM density in the primary tumor pre-
dicts metastatic risk in breast cancer patients [45–48].

Although many macrophage subtypes may be present in 
perivascular regions, only macrophages expressing high lev-
els of the angiopoietin receptor TIE2 (designated as  TIE2Hi 
macrophages), are capable of assembling functional TMEM 
structures [49]. It is known that tumor cells intravasating 
via TMEM express  MenaINV, which is required for transen-
dothelial migration and express an invasion signature that is 
characteristic of cell migration during embryonic develop-
ment [44, 45, 50, 51].

TMEM-associated endothelial cells have not been 
explored with regards to their gene and protein expression 
profiles and characteristics essential for TMEM function. 
However, the role of the perivascular  TIE2Hi macrophages 
has been recently evaluated in this context [49]. It was 
shown that TMEM function depends on the release of vascu-
lar endothelial growth factor (VEGF) from the  TIE2Hi mac-
rophage. Indeed, the conditional knockout of the VEGF gene 
specifically in macrophages blocks TMEM-dependent para-
cellular cancer cell intravasation without affecting TMEM 
assembly [49].

VEGF can cause intra-tumoral endothelial cell perme-
ability [52] via three distinct mechanisms: (a) pinocytosis 
paired with transcytosis, (b) endothelial fenestration, and 
(c) tight-junction-regulated (also known as “paracellular”) 
permeability [53–56]. Although the tumor neovasculature 
generated under the control of VEGF is almost always 
fenestrated, tumor cells cannot cross through the fenestrae 
of endothelia [56]. Cancer cell transendothelial migration 
requires paracellular permeability which involves disruption 
of tight junctions by relatively high concentrations of VEGF 

Fig. 1  Chemotherapy-induced metastasis. A working model depict-
ing critical molecular and cellular events of the metastatic cascade, 
including those in 1 primary tumor site (yellow box), 2 blood circula-
tion (red box), and 3 secondary tumor site (green box). Illustrations 
of chemotherapy-induced cellular and molecular events that facili-
tate the metastatic cascade are shown for each compartment indi-
vidually. Chemotherapy treatment induces the infiltration of a wide 
variety of bone marrow-derived cells (BMDCs) and mesenchymal 
stem cells (MSCs), mostly including proangiogenic and intratumoral 
macrophages, by altering the tumor chemokine network (including 

CXCR4/CCR2/CSF1R), thus amplifying all prometastatic pathways 
which involve the TMEM dissemination machinery (primary and sec-
ondary tumor sites) and the premetastatic niche formation (second-
ary tumor site). In addition, chemotherapy treatment may induce a 
platelet-mediated prometastatic response in blood circulation, as evi-
denced by the aggregation of platelets and platelet-derived macroves-
icles around circulating tumor cells (CTCs). Cartoon abbreviations: 
EC endothelial cell, M macrophage, TC tumor cell, TMEM tumor 
microenvironment of metastasis. (Color figure online)



 Clinical & Experimental Metastasis

1 3

[55–58]. Only endothelium around TMEM sites can achieve 
high enough VEGF concentrations through the function of 
 TIE2HiVEGFHi macrophages, for the disruption of endothe-
lial junctions and “paracellular” cancer cell intravasation as 
observed at TMEM [49]. The proangiogenic-perivascular 
 TIE2+ macrophages, which comprise a functional constitu-
ent of TMEM, are derived from  TIE2+ monocyte progenitors 
from the bone marrow [59–61]. TIE2 macrophage recruit-
ment in breast and pancreatic tumors and vascular perme-
ability at TMEM and cancer cell dissemination in breast 
tumors can be blocked by TIE2 inhibitor rebastinib, offer-
ing promising treatment options targeting TMEM associated 
vascular permeability and cancer cell dissemination [49, 62].

Monocyte infiltration could be achieved by the expression 
of three chemotactic receptors, the colony stimulating factor 
receptor (CSF1R), the C-X-C chemokine receptor type-4 
(CXCR4), and the C-C chemokine receptor type-2 (CCR2), 
on the  TIE2+ monocyte surface [60, 61, 63]. Tumors and 
tumor-associated stromal cells often upregulate and release 
systemically the respective ligands for the aforementioned 
chemotactic receptors, namely CSF1, CXCL12 (SDF-1) and 
CCL2, resulting in increased monocyte and myeloid cell 
chemotaxis [64–66] (Fig. 1). In addition, the CSF1/CSF1R 
axis also promotes macrophage maturation and survival in 
the tumor microenvironment, thus increasing the overall 
yield through maturation and/or macrophage repolarization 
[67]. Moreover, the expression of TIE2 can be upregulated 
in both endothelial cells and macrophages under the con-
trol of hypoxia-inducible factor-1a (HIF1A) [68]. There-
fore,  TIE2+ macrophages may be generated over time from 
tumor-resident macrophages undergoing hypoxic stress [68]. 
Furthermore, TIE2 signaling can suppress apoptosis and 
promote survival of  TIE2+ macrophages,  TIE2+ endothe-
lial cells and even  TIE2+ hematopoietic stem cells in the 
bone marrow niche [60, 69–73]. Therefore, it is possible 

that the perivascular  TIE2+ macrophages have more pro-
longed lifespan than classically-activated inflammatory 
macrophages, due to enhanced TIE2-mediated retention in 
the perivascular niche. In conclusion, in many solid carcino-
mas the aforementioned molecular pathways may contribute 
to an increasing population of  TIE2+ macrophages, which 
are known to promote angiogenesis, TMEM assembly, and 
TMEM-dependent cancer cell dissemination [45, 59, 60, 68, 
73].

An important microanatomical element for vascular per-
meability and intravasation during cancer progression is the 
pericyte coverage of the post-capillary venules [9]. Pericytes 
mediate antiproliferative and stabilizing paracrine signaling 
to the adjacent endothelium, mainly through the secretion of 
angiopoietin-1 (ANG1), which promotes blood vessel quies-
cence and basement membrane synthesis [74]. The cancer-
associated endothelium, and especially the neoplastic neo-
vasculature, frequently presents with low pericyte coverage 
[75] (Fig. 1). Although pericyte-TMEM interactions have 
not been described in detail, it has been noted that functional 
TMEM sites are depleted of pericytes [49].

Biological programs in circulating tumor cells

Once tumor cells escape the primary site, they need to estab-
lish mechanisms of survival or resistance against immuno-
logical destruction, lack of adhesion to ECM substrates, as 
well as physical hazards, such the increased shear stress of 
the blood flow (Fig. 1). These are accomplished through 
signaling pathways that convey immune evasion, resistance 
to anoikis, and possibly cluster formation mediated by cir-
culating platelets [9, 76]. Only a fraction of CTCs survive, 
extravasate and initiate metastatic growth [77, 78] which 
implies that not all CTCs have tumor-initiating capability 
[45]. In addition, it appears that stem-like properties are 

Fig. 2  TMEM in primary and secondary tumor sites. Tissue images 
from primary mammary tumor (a), and lung metastatic tumor (b), 
showing TMEM sites as visualized by triple-stain immunohisto-
chemistry. The black boxes represent magnified inserts of the black 

squared areas to display TMEM structures in higher detail. EC, blue, 
endothelial cell; M, brown, macrophage; TC, red, MENA-expressing 
tumor cell. Figure from Entenberg et al. [161]. (Color figure online)
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required for successful metastatic colonization [79, 80]. 
Since “stemness” is triggered in specific niches within the 
primary tumor mostly involving juxtacrine signaling from 
tumor-associated macrophages (TAMs) and other myeloid-
derived cells [81–83], the composition of the primary tumor 
microenvironment may play a pivotal role in metastatic 
capabilities of the primary tumor. Thus, areas of tumor 
enriched for tumor cell-macrophage pairing during chemo-
taxis and haptotaxis towards blood vessels and TMEM sites 
[31, 33, 37, 38], may represent niches for cancer cell educa-
tion required for successful metastatic colonization.

CTCs have been extensively analyzed using high-through-
put approaches, such as RNA-sequencing at the single-cell 
level and it has been shown that they can carry mutational 
and even epigenetic information from the primary tumor. 
However, there are certain discrepancies arising from the 
comparison of these profiles, making the origin of CTCs 
more debatable. In particular, it is not certain whether CTCs 
exclusively originate from the primary tumor, or also dis-
seminate from clinically undetectable secondary sites [45]. 
Thus, we theorize that the microenvironment of the second-
ary sites may also contribute to programming of tumor cells 
and further cancer progression (Fig. 2b).

Cancer–stroma interactions in the metastatic 
microenvironment

While CTCs could potentially access all tissues in the body, 
metastatic disease usually develops in selected tissues and 
organs, depending on the type of cancer. Recent evidence 
suggests that the organotropic properties of disseminating 
cancer cells may be dictated by the exosomes, small mem-
brane vesicles ranging in size from 40 to 100 nm, secreted 
from primary tumors [84]. The exosome function has been 
described as a major pathway contributing to the forma-
tion of a metastasis-receptive niche [85–87]. In particular, 
primary tumors may secrete exosomes that exert specific 
tropism for particular secondary sites, based on the integrin 
profile of the tumor-derived exosomal cargo and that of the 
tissue-specific stromal cells [84].

Metastasizing tumor cells frequently home to tissues 
in which tumor-promoting stromal cells offer a supportive 
microenvironment, also known as the “premetastatic niche” 
[88] (Fig. 1). Recent evidence suggests that myeloid-derived 
suppressor cells (MDSCs), which have been traditionally 
considered components of the immunosuppresive tumor 
microenvironment, can promote premetastatic niche forma-
tion, as well as increase tumor angiogenesis and invasion 
[89]. Furthermore, it seems that neutrophils may contrib-
ute to successful formation of metastatic foci. In particular, 
neutrophils recruited to the premetastatic niche produce a 
set of leukotrienes which specifically expand cancer cell 
subpopulations with high tumorigenic potential, such as 

cancer stem cells (CSCs) [90]. Tissue-resident stromal cells 
may also contribute to premetastatic niche formation. For 
instance, periostin secreted locally by recruited fibroblasts 
facilitates metastatic initiation and colonization of breast 
cancer cells in the lung [91]. Therefore, a variety of bone 
marrow-derived cells (BMDC) and tissue-resident stromal 
cells may contribute to the formation of micrometastatic foci 
in the secondary site.

The last critical step in the metastatic cascade is the tran-
sition of micrometastatic foci into clinically overt metasta-
ses; a process that involves awakening of disseminated tumor 
cells (DTCs) from dormancy [92, 93] (Fig. 1). Dormancy 
represents a specialized biological program exploited by 
metastasizing cancer cells to convey survival advantages 
in the secondary tumor site, until they become capable of 
further expansion and colonization. Recently proposed sce-
narios suggest that DTCs may activate stress signals in the 
secondary tumor microenvironment which may help them 
to resume growth. DTCs may also carry specific gene sig-
natures triggered by the hypoxic niche of the primary tumor 
microenvironment and these signatures may be associated 
with tumor progression at the secondary sites [92–94]. Thus, 
both tumor cell intrinsic factors and the tumor microenvi-
ronment (involving both tissue-resident stromal cells and 
recruited BMDCs) are involved in the formation of the 
premetastatic niche, as well as in the regulated entry/escape 
of DTCs from the dormancy program and parallel initiation 
of the colonization step.

Chemotherapy‑induced systemic 
and tissue‑specific prometastatic effects

The metastatic process is controlled by a delicate balance 
between promoting and suppressive factors in the tumor 
microenvironment. The dominance of the former over the 
latter increases the efficiency of metastasis. A body of evi-
dence presented over the past several years indicates that 
chemotherapy treatment may tilt this balance in favor of 
cancer cell dissemination. Chemotherapy may lead to tissue 
damage and subsequent activation of host-mediated tissue 
repair program, which involves plethora of cytokines and 
chemokines [5] that can affect the metastatic susceptibil-
ity of distant organs [6, 7]. If chemotherapy is given pre-
operatively, significant changes occur in the composition of 
the primary tumor microenvironment which may favor the 
metastasis-promoting rather than the metastasis–suppressing 
components of the tumor microenvironment. Since chemo-
therapy treatment may, under certain circumstances, shift 
the balance towards favoring metastases it is important to 
elucidate the exact contextual prerequisites for metastasis 
induction and identify risk factors which could potentiate 
those effects in certain patient subpopulations.



 Clinical & Experimental Metastasis

1 3

Chemotherapy may provide systemic 
support for metastasis through the induction 
of pro‑inflammatory circuits

It has been shown that certain chemotherapeutic drugs, such 
as paclitaxel, may initiate prometastatic responses in the pri-
mary tumor microenvironment by directly activating specific 
inflammatory signaling pathways [95]. Paclitaxel structur-
ally resembles a pattern recognition receptor called toll-like 
receptor-4 (TLR4), which is mainly expressed on the surface 
of antigen-presenting cells and responds to lipopolysaccha-
ride (LPS), a component of the bacterial membrane [96]. 
Macrophages with activated TLR4 pathway, mediated by 
either LPS or paclitaxel, quickly migrate to a site of infec-
tion, or tissue repair induced by chemotherapy and/or radio-
therapy [97] to either destroy the invaders or restore homeo-
stasis in the affected tissue [96]. However, overexpression 
of TLR4 has been observed on tumor cells as well. Thus, 
TLR4 positive cancer cells can be activated by paclitaxel 
which can exacerbate proinflammatory tumor microenvi-
ronment. These host-initiated proinflammatory responses 
are frequently accompanied by increased angiogenesis and 
cancer cell invasion which may promote metastatic dissemi-
nation [97–101].

However, it should be noted that most of the described 
proangiogenic and prometastatic effects of chemotherapy are 
not a direct result of specific signal transduction pathways, 
as in the case of paclitaxel-TLR4 axis, but a more generic 
response to cytotoxic tissue damage, hypoxic stress and a 
prolonged wound healing-like process [99, 102, 103]. For 
instance, Chang et al. [104] have shown that paclitaxel and 
cyclophosphamide may induce cancer cell dissemination and 
metastatic colonization by recruiting myeloid progenitors in 
both the primary and the secondary sites in a stress-induc-
ible Atf3-dependent manner. The transcription factor Atf3, 
a member of the ATF/CREB family of transcription factors 
activated upon stress, is a master regulator of a plethora of 
inflammatory cytokines involved in leukocyte migration and 
angiogenesis [105]. In both spontaneous and experimental 
metastasis models, Atf3 was shown to be required for cancer 
cell seeding and the development of distant metastasis [104], 
indicating that proinflammatory circuits are necessary for 
chemotherapy-induced metastasis.

Chemotherapy mediates the mobilization of bone 
marrow progenitors to primary and secondary sites 
to promote metastasis

It has been proposed that metastasis is regulated through 
an incipient host repair mechanism initiated by the mobi-
lization of bone marrow-derived cells (BMDCs), such as 
hemangiocytes, endothelial progenitor cells (EPCs),  TIE2+ 
monocytes and myeloid-derived suppressor cells (MDSCs), 

all known to regulate angiogenesis and blood vessel homeo-
stasis in damaged tissues [65, 106–108]. Indeed, it has been 
shown that chemotherapy can trigger the mobilization of 
various BMDCs to primary tumor site, as well as to the 
lung [106, 109, 110]. Chemotherapy may promote the 
formation of the premetastatic niche, by creating a stress 
response and amplifying the chemotactic signals and the 
proinflammatory circuits to which all these BMDCs may 
respond. Once recruited, BMDCs can then promote meta-
static dissemination by producing and systemically releas-
ing chemokines, bioactive lipids, alarmines and growth fac-
tors [102]. Depending on the adaptive characteristics and 
the expression profiles of the respective receptors on the 
tumor cell surface, the dissemination and homing of tumor 
cells at secondary sites can be exacerbated [102]. Moreover, 
chemotherapy may induce metastasis by mechanisms that 
do not involve myeloid and/or endothelial progenitors. For 
instance, Roodhart et al. (2011) demonstrated that platinum 
analogs, such as cisplatin, may stimulate mesenchymal stem 
cells (MSCs) to release polyunsaturated fatty acids, which 
may, in turn, systemically support tumor growth, resistance 
to chemotherapy and metastasis in mouse models of breast, 
lung and colon carcinomas [111, 112]. The role of MSCs 
in tumor progression is debatable, and depending on the 
context may be either tumor-promoting or tumor-suppressive 
[113–116]. However, it has been documented that MSCs 
are recruited to chemotherapy-damaged tissues, where they 
can also exert certain prometastatic effects [111, 112, 117, 
118]. Since these bone marrow-derived progenitor cells are 
principal mediators of chemotherapy-induced metastasis in 
virtually all steps of the metastatic cascade (Fig. 1), and are 
released from the bone marrow in response to proinflamma-
tory circuitries, we will refer to them as the BMDC/MSC 
infiltrate.

Chemotherapy may promote EMT and increased 
cancer cell invasiveness

The remainder of this chapter describes chemotherapy-
induced pro-metastatic changes in the sequential steps of 
the metastatic cascade, as described in the previous sections.

As mentioned before, the acquisition of mesenchymal 
phenotype through EMT is considered the initial step in the 
metastatic cascade [11, 12, 80]. Although there are studies 
on chemotherapy-mediated EMT suppression and/or MET 
induction [119, 120], several reports have also linked chemo-
therapy treatment with an induction of EMT in the primary 
tumor microenvironment. For instance, continued treatment 
with paclitaxel or vincristine promoted EMT and contributed 
to the formation of lung metastasis in mice bearing hemat-
opoietic malignancies [121]. Likewise, in breast carcinoma, 
paclitaxel was shown to promote the expression of EMT 
markers in cancer cells, including the concerted decrease of 
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E-cadherin, increase of vimentin and nuclear localization 
of β-catenin, as well as induced lung metastases through a 
miR-21/Cyclin-dependent kinase-5 (CDK5) pathway [122]. 
Moreover, high-dose paclitaxel treatment, which could be 
achievable in the clinical setting, significantly increased 
the formation of invadopodia in breast cancer cells in vitro 
[123]. Chemotherapy may also affect EMT in an indirect 
fashion. For example, it has been reported that miRNA, 
miR-488, inhibits EMT in breast cancer cells [124]; how-
ever chemotherapy treatment frequently suppresses miRNA-
488 in an NF-kB-dependent manner which relieves miR-
488 EMT inhibition and thus indirectly stimulates EMT. In 
particular, cancer patients who received cyclophosphamide, 
epirubicin plus taxotere, or epirubicine plus 5-fluororacil 
had significantly suppressed levels of miR-488 [124], thus 
indicating potential chemotherapy-mediated EMT induction. 
Chemotherapy-induced EMT has also been reported in non-
epithelial cancers, for instance, in cisplatin-treated osteosar-
comas [125]. However, it still remains unclear whether the 
relative increase of mesenchymal-like tumor cells observed 
upon chemotherapy is a result of direct chemotherapy medi-
ated EMT induction or a consequence of selection of chem-
oresistant cancer cells [80, 126].

Chemotherapy can also increase the proportion of inva-
sive cancer cells. It was noted that paclitaxel treatment 
promotes the expression of  MENAINV in the PyMT mouse 
model of breast carcinoma, a metastatic patient-derived 
xenograft (PDX) model and post-chemotherapy breast 
cancer tissue samples from patients [26]. Since  MENAINV 
promotes invadopodium maturation [34], the increase in 
 MENAINV expression upon chemotherapy may be mechanis-
tically linked to the observation that chemotherapy induces 
invadopodia [123]. As described earlier,  MENAINV sensi-
tizes cancer cells to RTK ligand-dependent chemotaxis and 
ITGA5B1/FN-dependent haptotaxis [33], enhancing the 
migratory behavior of tumor cells. In addition,  MENAINV 
increases tumor cell transendothelial migration at TMEM 
[44, 51]. Thus, chemotherapy-induced  MENAINV expres-
sion may be responsible for recently reported observation of 
chemotherapy-induced increase in CTCs [26, 104]. Interest-
ingly, mice lacking both functional copies of the MENA gene 
(i.e.  MENA−/−) developed no CTCs and DTCs, even after 
receiving a metastasis-exacerbating dose of neoadjuvant 
chemotherapy, which indicates that MENA orchestrates a 
cell motility/invasion program in cancer cells, irrespective 
of chemotherapy treatment [26]. Although it is not clear 
how chemotherapy causes an upregulation of  MENAINV 
expression in primary breast tumors [26], recent evidence 
has shown that  MENAINV can be upregulated in cancer 
cells as a result of Notch1-mediated juxtacrine signaling 
upon contact of cancer cells with macrophages [44]. Thus, 
chemotherapy-induced BMDC/MSC recruitment may be 
mechanistically associated with the induction of EMT and/

or invasive cancer cell phenotypes (i.e.  MENAINV-Hi) in the 
primary tumor microenvironment.

Chemotherapy may affect cancer cell intravasation 
and dissemination

As outlined in “Regulation of vascular permeability and 
intravasation by  TIE2HI macrophages” section, the highly-
invasive  MENAINV cancer cells are required but are not 
sufficient for cancer cell dissemination, unless they uti-
lize functional intravasation sites, called TMEM [44, 51]. 
Accumulating evidence now demonstrates that a wide vari-
ety of chemotherapy regimens promote the mobilization of 
BMDCs/MSCs to the primary tumor microenvironment to 
repair the cytotoxic tissue damage, which in turn facilitate 
tumor regrowth and TMEM formation [26, 59, 61, 110, 
127]. In particular, in the process of eliciting this chemother-
apy-driven tissue repair response, new blood vessel forma-
tion (angiogenesis) frequently takes place, and encourages 
residual cancer cells that survived chemotherapy to resume 
growth [60, 66, 68, 73, 110, 127–132]. Recent experimental 
work by Hughes et al. suggested that cancer cell death and 
chemotherapy-induced hypoxia/necrosis could potentially 
promote the expression and systemic release of chemotactic 
factors, such as CXCL12, which in turn signals to  CXCR4+ 
EPCs and monocyte progenitors, naturally residing in the 
bone marrow to home into primary tumors [132]. Indeed, 
cyclophosphamide treatment resulted in an influx of perivas-
cular  CXCR4+TIE2+ macrophages, which accelerated neo-
angiogenesis and tumor regrowth [132].

In addition, at least two different chemotherapy regimens 
given in the neoadjuvant setting, either paclitaxel alone or 
the doxorubicin-cyclophosphamide combinatorial treatment, 
were both capable of promoting  TIE2Hi macrophage infiltra-
tion and increasing  TIE2+ macrophage-associated TMEM 
assembly in multiple immunocompetent or immunodeficient 
mouse models of breast cancer [26]. Chemotherapy-induced 
TMEM assembly was subsequently corroborated indepen-
dently by another research group [104]. Moreover, TMEM 
score increased in post-neoadjuvant breast cancer tissue 
samples from patients with  ER+/HER2− breast cancer, who 
were treated with weekly paclitaxel for up to 12 weeks fol-
lowed by four cycles of doxorubicin plus cyclophosphamide 
[26]. This observation may at least in part explain why long 
term survival of patients who do not achieve pathologic 
complete response (pCR) after neoadjuvant chemotherapy 
is worse than in patients who do achieve pCR [133]. The 
most concerning observation however was that in 10 out 
of 20 patients neoadjuvant chemotherapy increased TMEM 
score over the threshold that separates low-medium risk 
from high risk score for developing distant metastasis [26], 
as determined in a retrospective case-control study which 
demonstrated that TMEM is prognostic for metastasis in 
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 ER+/HER2− breast cancer [47]. In conclusion, chemo-
therapy-mobilized  TIE2+ macrophages may not only elicit 
proangiogenic but also prometastatic effects, since the  TIE2+ 
macrophage subpopulation is a prerequisite for function of 
TMEM sites.

The studies discussed above [26, 104], also docu-
mented chemotherapy-induced increase in CTCs, a result 
of increased TMEM assembly and function in chemother-
apy-treated animal tumors. Indeed, although CTC count 
measured by U.S. Food and Drug Administration-approved 
CellSearch System is a strong prognostic factor in both pri-
mary and metastatic breast cancer in humans, there is no 
conclusive evidence that chemotherapy significantly reduces 
CTCs [134]. On the contrary, several reports have indicated 
that CTC counts in post-chemotherapy blood samples actu-
ally increase in some patients and decrease in others, yet 
they all correlate with distant metastasis-free survival [135, 
136]. Collectively, these observations demonstrate that neo-
adjuvant chemotherapy may induce prometastatic changes in 
the primary tumor microenvironment, which may promote 
TMEM assembly and TMEM-dependent cancer cell dissem-
ination. These findings indicate that chemotherapy-treated 
tumors do not use de novo mechanisms of cancer cell dis-
semination, but rather amplify the already established ones 
through the recruitment of BMDCs/MSCs (Fig. 1).

Chemotherapy may convey prometastatic 
properties on circulating tumor cells

The effects of chemotherapy treatment on CTCs have 
been rather underexplored. It has been demonstrated that 
chemotherapy-mediated tissue damage may also acti-
vate proteolytic cascades, including the complement cas-
cade, the coagulation cascade and the fibrinolytic cascade, 
whose primary purpose is to initiate responses in damaged 
endothelia, but some of their activated proteolytic cleavage 
products are directly or indirectly involved in the ability of 
CTC to form metastases [102]. For example, the upregu-
lation of urokinase plasminogen activator receptor (uPAR) 
[137, 138] and thrombin [139, 140], have been both linked 
to increased metastatic capacity. Furthermore, it has been 
demonstrated that chemotherapy may activate blood plate-
lets into releasing platelet-derived microvesicles in form of 
small membrane fragments containing platelet-endothelium 
cell adhesion receptors (Fig. 1), such as CD41 and CD62P 
[102, 141–143]. These platelet-derived membrane frag-
ments can subsequently coat the surface of CTCs, facilitat-
ing their attachment to the endothelium at the site of future 
metastasis [144, 145]. In addition, the coating of CTCs with 
platelets may shield tumor cells from violent shear forces 
[146], as well as promote the aggregation and formation 
of tumor cell emboli that can be more easily entrapped and 
retained in small vessels [147]. Finally, tumor cells within 

platelet-mediated aggregates are significantly protected from 
immunological destruction, mainly through the release of 
platelet-derived transforming growth factor-beta1 (TGF-β1), 
which inactivates NK cells through downregulation of the 
NK cell receptor NKG2D [148] (Fig. 1). This pathway could 
represent one of the multiple mechanisms of NK cell eva-
sion by cancer cells and metastatic subversion of NK cell 
surveillance [149].

Chemotherapy may facilitate cancer cell seeding 
and colonization at distant sites

Chemotherapy may inflict hypoxic damage in tissues other 
than the primary tumor site, thus causing the release of 
chemotactic factors by tissue-resident leukocytes, fibroblasts 
and endothelial cells, and these chemotactic factors in turn, 
attract various BMDCs/MSCs [150]. The recruitment of 
BMDCs/MSCs to the secondary sites (either triggered by 
chemotherapy or not) initiates the formation of the prem-
etastatic niche [88]. Once homed in the premetastatic niche 
(Fig. 1), BMDCs/MSCs may then regulate the development 
and progression of metastasis through paracrine interac-
tions with the newly arrived metastasizing tumor cells. 
For example, Daenen et al. showed that mice treated with 
paclitaxel or cisplatin had significantly increased tumor cell 
retention in the lung vasculature with consequent metastatic 
colonization. This phenotype was explained by chemother-
apy-induced expression of the vascular endothelial growth 
factor receptor 1 (VEGFR1) by the endothelial cells which 
enhanced endothelial-tumor cell adhesion and paracrine 
interactions [6]. This result was obtained with different 
tumor types, including breast and colon carcinoma as well 
as melanoma cells, suggesting that creation of the premata-
static niche is a more generalized, rather than a tumor cell-
dependent effect of chemotherapy [6].

Furthermore, certain chemotherapies were shown to 
either increase the production and release of exosomes or 
to alter the composition of tumor-specific exosomes, also 
described as chemotherapy-induced exosomes or “chemo-
exosomes” [151]. However, the evidence of a direct effect 
of chemoexosomes on premetastatic niche formation is cur-
rently lacking, although these observations certainly warrant 
further investigations.

The final step of the metastatic cascade involves the 
survival of disseminated cells and micrometastatic foci in 
the microenvironment of the secondary site, and, follow-
ing the exit from a dormancy program, the subsequent 
cancer cell proliferation at the secondary sites [8, 93, 152]. 
Chemotherapy-facilitated colonization has been described 
in certain cancer models, following the initial interactions 
of tumor cells within the premetastatic niche. A critical 
mediator of this step was shown to be matrix metallopro-
teinase-9 (MMP9), which was significantly overexpressed 



Clinical & Experimental Metastasis 

1 3

in  VEGFR1+ EPCs or in other BMDCs following chemo-
therapy [109, 153]. Indeed, the local release of MMP9 in the 
metastatic niche eventually supported metastatic coloniza-
tion of CTCs in an experimental metastasis mouse model, 
and was reversed by specific inhibition of MMP9 [109]. In 
these studies, chemotherapy-induced MMP9 overexpression 
had a distinct effect on cancer cell extravasation and the for-
mation of micrometastatic foci, which increased the overall 
rate of macrometastasis formation [109, 153]. A different 
study demonstrated that inflammatory monocytes (iMs) 
could be recruited to the tumor microenvironment at the 
secondary sites through a CCL2/CCR2 chemotaxis path-
way following chemotherapy [104]. Recruitment of these iM 
promoted the local suppression of cytotoxic  CD8+ T-lym-
phocytes in the lung, thus facilitating metastatic coloniza-
tion in mouse model of either spontaneous or experimental 
metastasis [104]. These observations collectively suggest 
that chemotherapy induces recruitment of BMDCs/MSCs 
to the premetastatic niche, which in turn, facilitate tumor 
cell seeding and subsequent colonization of the secondary 
site (Fig. 1).

Therapeutic reversal 
of the chemotherapy‑induced prometastatic 
effects

Chemotherapy increases survival in patients with a vari-
ety of localized and advanced cancers [133, 154]. How-
ever, there are many patients who do not draw full benefit 
from chemotherapy, and according to recent findings (as 
described in “Chemotherapy-induced systemic and tissue-
specific prometastatic effects” section), chemotherapy may 
induce more aggressive disease in some patients. Therefore, 
new treatment modalities for preventing chemotherapy-
induced metastasis as well as new markers that can predict 
which patients will likely develop more advanced disease 
due to chemotherapy are needed. It should be noted that 
certain biological programs, such as chemotherapy-induced 
 MENAINV expression as described in “Chemotherapy may 
promote EMT and increased cancer cell invasiveness” 
section, are particularly attractive candidates to eliminate 
chemotherapy-driven metastasis. However, given the cur-
rent challenges of intracellular drug delivery in vivo [155], 
in this section, we focus on basic principles and rationale for 
designing approaches based on extracellular targets.

Burning off the “catalyst” of the metastatic cascade

Various cells within the tumor microenvironment, such as 
leukocytes, macrophages, endothelial cells, fibroblasts as 
well as tumor cells release chemokines and create the so 
called tumor “chemokine network” [150]. Chemotherapy 

induces cytotoxic tissue damage and hypoxia and sub-
sequent recruitment of myeloid and/or mesenchymal 
cells from the bone marrow. These bone marrow-derived 
BMDC/MSC infiltrates modify the chemokine network 
of the primary tumor and shift the balance towards the 
prometastatic phenotype. Thus, the BMDCs/MSCs act as 
“catalysts” in the progression of the metastatic cascade 
(Fig. 1). In view of this working hypothesis, various phar-
macological interventions in the chemokine network could 
theoretically prevent the accumulation of BMDC/MSC 
infiltrates in the primary and secondary tumor microen-
vironments, thus eliminating the prometastatic effects of 
chemotherapy.

As already explained in “Revisiting the metastatic cas-
cade” section, chemotherapy may support the infiltration, 
maturation and increased retention of metastasis-promoting 
BMDCs/MSCs in a context-dependent manner, mainly 
through the induction of the CXCL12/CXCR4, CCL2/
CCR2 and CSF1/CSF1R chemotactic pathways [61, 132]. 
Therefore, pharmacological inhibition of CXCR4 paired 
with chemotherapy can significantly suppress primary tumor 
growth [156], chemotherapy-induced angiogenesis [132], 
and metastatic burden of chemoresistant tumors [157], as 
shown in preclinical models of ovarian, breast and small 
cell lung cancer. Therefore, the pharmacological inhibi-
tion of the chemokine receptor CXCR4 in conjunction with 
chemotherapy could potentially counteract the chemother-
apy-exacerbated CXCR4-mediated prometastatic effects. 
Similarly, the selective antagonists of the chemokine recep-
tor CCR2 (or small molecule inhibitors of CCL2) have been 
used quite efficiently in this context, since they are capable 
of disrupting M2-like macrophage recruitment, macrophage-
mediated immunosuppression and metastatic efficiency in 
preclinical models of prostate, liver and pancreatic cancers 
[64, 158, 159]. Finally, the specific blockade of the CSF1/
CSF1R pathway can also efficiently reprogram the immu-
nosuppressive responses of myeloid cells in the primary 
tumor microenvironment [67], thus reducing tumor growth 
and metastasis [160].

The few examples discussed above provide a proof-of-
principle that the therapeutic modulation of the chemokine 
network in many types of solid carcinomas could pose an 
effective strategy for preventing chemotherapy-induced 
metastasis. However, the chemotactic pathways leading to 
recruitment of BMDCs/MSCs in the tumor microenviron-
ment are promiscuous. In other words, there are many dif-
ferent types of BMDCs/MSCs that respond to a variety of 
chemotactic stimuli [9, 150], and therefore, the selective 
targeting of one such pathway may promote the selection 
of alternative pathways achieving similar metastatic poten-
tial through different BMDC/MSC “catalysts”. The chaotic 
nature of the chemokine network along with our limited 
knowledge behind the overall chemokine repertoire of 
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individual human cancer types [150] make this therapeutic 
approach quite challenging, but worth-pursuing.

Sealing the “doorways” to cancer cells

Another approach to eliminate the chemotherapy-induced 
prometastatic effects would be blocking cancer cell intra-
vasation and extravasation, the two “vulnerable” steps of 
the metastatic cascade with regards to the efficiency of the 
metastatic process (Fig. 1). Indeed, since tumor cells dis-
seminate via an intravasation mechanism involving TMEM 
[49] and TMEM are present in both primary tumors and 
secondary metastatic sites (Fig. 2) [161], the pharmacologi-
cal inhibition of the TMEM doorways to seal them to tumor 
cell intravasation would eliminate CTCs, irrespective of 
the chemotherapeutic that induced prometastatic changes. 
In addition, since TMEM are present in both the primary 
tumor and its metastatic sites, TMEM inhibition would be 
beneficial in all stages of treatment.

The crucial BMDC involved in TMEM-dependent cancer 
cell dissemination is the perivascular  TIE2+ macrophage, 
which in fact, is a proangiogenic M2-like macrophage [49, 
132].  TIE2+ macrophages are tethered in the perivascular 
niche of primary tumors, because they respond to angiopoi-
etin signals or other non-canonical ligands, such as integrins 
and lysyl oxidase, originating from the cancer-associated 
endothelium [162–166]. Recently, the TIE2 kinase switch 
pocket inhibitor rebastinib, was shown to inhibit TIE2, 
and subsequently reduced tumor growth, angiogenesis and 
metastasis in orthotopic mouse models of metastatic mam-
mary carcinoma and pancreatic neuroendocrine tumors [62]. 
In particular, rebastinib inhibited TMEM function by inhib-
iting the angiopoietin receptor TIE2 on the TMEM mac-
rophage and prevented VEGF-dependent vascular perme-
ability [62]. Furthermore, rebastinib significantly reduced 
the number of TMEM-dependent CTCs in the blood and 
the number of DTCs in the lungs [26], and significantly 
increased the overall survival of paclitaxel-treated mice even 
after resection of the primary tumor [62]. These observa-
tions indicate that TIE2 inhibition inhibits the chemother-
apy-induced prometastatic tumor microenvironment associ-
ated with TMEM [26].

Another therapeutically “vulnerable” step of the met-
astatic cascade is tumor cell extravasation, as it is also 
required for effective colonization. Previous studies have 
documented that tumor cell adherence and retention in 
the intraluminal side of blood vessels in the metastatic 
organs may persist for a varying period of time, which 
dictates tumor cell survival probability and their clear-
ance by cytotoxic immune cells, such as NK cells [167]. 
Therefore, the interactions of CTCs with the premetastatic 
niche are of utmost importance for successful seeding, and 

the therapeutic intervention of those interactions may pose 
another attractive strategy for counteracting chemother-
apy-induced metastasis. For instance, Daenen et al. dem-
onstrated that chemotherapy-recruited  VEGFR1+ EPCs in 
the lung endothelium can significantly promote the early 
retention and survival of tumor cells, eventually facili-
tating the formation of metastasis, as already described 
in “Chemotherapy may facilitate cancer cell seeding and 
colonization at distant sites” section. Indeed, the targeted 
inhibition of VEGFR1 with neutralizing antibodies, but 
not that of other VEGF receptors such as VEGFR2, com-
pletely eliminated the chemotherapy-mediated tumor cell 
retention and subsequent lung colonization [6]. These 
observations suggest that the disruption of critical tumor-
host cell interactions during cancer cell extravasation may 
profoundly affect the fate of metastasis in the presence of 
chemotherapy.

Conclusions and future directions

Our understanding of cancer progression has been rapidly 
evolving and it has moved in somewhat unexpected direc-
tions in the past several years. We have been reminded that 
tissues and organ systems in complex metazoan organisms 
operate in harmony, and that any insult, even if introduced 
with the intention to cure, may have complex consequences 
that we only now have started to unravel. As a large body 
of preclinical evidence indicates, cytotoxic chemotherapy 
in the process of destroying tumor cells activates host 
reparatory mechanisms that may sabotage our intentions to 
cure cancer. We now need to move our focus from study-
ing cancer cells in isolation to studying cancer cells not 
only in the context of their immediate tumor microenviron-
ment, but also in the context of the whole organism. As our 
understanding of the effect of chemotherapy on complex 
host repair mechanisms feedback grows, so will our efforts 
to develop novel therapeutic combinations. We are already 
witnessing the use of combined cytotoxic chemotherapy 
with the TMEM inhibitor rebastinib in clinical trials. In 
the years to come, we expect to see many more clinical 
trials focused on combining cytotoxic therapies with 
therapies targeting chemotherapy-induced pro-metastatic 
changes. Thus, we expect that in the future our efforts will 
refocus from treating cancer towards treating the cancer 
patient as a harmonious system.
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